
THE UNIVERSITY OF CHICAGO

A PARTICLE IN CELL PERFORMANCE MODEL ON THE CS-2

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

BACHELOR OF ARTS IN COMPUTER SCIENCE WITH HONORS

DEPARTMENT OF COMPUTER SCIENCE

BY

MANDY LA

CHICAGO, ILLINOIS

JUNE 2021

Copyright © 2021 by Mandy La

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . v

ACKNOWLEDGMENTS . vi

ABSTRACT . vii

1 INTRODUCTION . 1

2 THE CS-2 WAFER SCALE ENGINE . 3

3 PARTICLE IN CELL . 8

4 DESIGN . 10
4.1 Static Particle Method . 11
4.2 Dynamic Particle Method . 11

5 PARTICLE IN CELL ON CS-2 . 14
5.1 Parameters . 14
5.2 Preprocessing . 15
5.3 Charge Density . 16
5.4 Finite Difference . 18
5.5 Electric Field . 19
5.6 Interpolate . 19
5.7 Particle Update . 20

6 PERFORMANCE MODEL AND RESULTS . 21
6.1 Problem Size . 21
6.2 Performance Model . 22

7 DISCUSSION . 25
7.1 Additional Complications . 25

7.1.1 Load Imbalance . 25
7.1.2 Particle Data Transfers . 25

7.2 Mapping Modifications . 27
7.3 Comparing Against Other Machines . 29

8 CONCLUSION . 34

REFERENCES . 36

iii

LIST OF FIGURES

2.1 The CS-2 (left) houses the WSE-2 (right) along with cooling mechanisms and
power supply. All compute-hardware is located on the WSE-2. The WSE-2 is
shown next to a hockey puck for size comparison. The WSE-2 is 8.5 inches on
both sides. The CS-2 is 15 Rack Units. Photos Courtesy of Cerebras Systems. . 3

2.2 The WSE consists of a 2D grid of tiles. Each tile holds a processor, its memory,
and a router. The router connects the tile to its North, South, East, and West
neighbors. 5

4.1 A direct mapping of a 3-by-3 grid of mesh cells onto an array of PEs. 10

5.1 Particle represented as a struct in C. Particle.position[0] represents the x-coordinate
of the particle, and Particle.position[1] represents the y-coordinate. Particle.velocity
can be interpreted analogously. 15

5.2 The blue square represents the PE’s region. The white circle represents a particle
with a global location of (px, py). The green circle represents the bottom left
node of the PE, located globally at (nx, ny). In preprocessing, we will calculate
the offset position as (px-nx, py-nx) so that the coordinates are relative to the
bottom left node of the PE. 16

5.3 The blue square represents the PE’s region. The white circle represents a particle
with a global location of (px, py). The green circle represents the bottom left
node of the PE, located globally at (nx, ny). In preprocessing, we will calculate
the offset position as (px-nx, py-nx) so that the coordinates are relative to the
bottom left node of the PE. 17

6.1 Plot of theoretical and observed performance based on problem size. Np = 408
is the maximum problem size. 24

7.1 Load imbalance can have a dramatic impact on performance. This graph com-
pares the theoretical performance given different ratios of load imbalance. Mp
= maximum number of particles on any given PE. Np = Average number of
particles per PE. 26

7.2 PIC Performance after accounting for particle movement. 28
7.3 A 9-by-9 grid of mesh cells tessellated onto a 3-by-3 grid of PEs. The mesh grid

is “folded” onto the array of PEs. This mapping preserves adjacencies of mesh
cells, keeping communication patterns consistent with non-tessellated mappings. 30

7.4 Performance worsens with larger B. Blocking produces better performance than
tessellation. In all cases, blocking and tessellation perform worse than the orig-
inal one mesh per PE mapping. Thus, we recommend only using blocking or
tessellation when the mesh size is larger than 850,000. 31

7.5 A log scale graph comparing the performance of the Tesla K40, GTX 90, and
Quadro K620 to the CS-2. 33

iv

LIST OF TABLES

2.1 The newly announced CS-2 more than doubles the potential of the first-generation
CS-1. Although the physical size of the system stays the same, the massive
increase in core count is thanks to the decrease in IC Process, allowing Cerebras
Systems to fit 2.1 times more PEs on the WSE-2. 4

2.2 The CS-2 compared to the IBM Blue Gene/Q petascale supercomputer located at
the Argonne National Laboratory. Although now retired, the IBM Blue Gene/Q
ranked number 22 on the Top500 list of supercomputers in November 2019. . . . 6

5.1 A list of relevant input parameters the notation used to denote them. 15

6.1 Number of Operations per PE by step. 22
6.2 Number of cycles per PE needed to complete each step. 23
6.3 Performance Summary of PIC program on the CS-2. Assumes all 850000 PEs are

utilized. 23

7.1 Updated PIC performance model taking into account load imbalance and particle
data transfer. 28

7.2 Compares the Total Work and Total Latency between the original mapping, block
mapping, and tessellation mapping. 30

v

ACKNOWLEDGMENTS

I could not have successfully completed this thesis without the help and support of the fol-

lowing people.

I would like to thank my advisor, Professor Andrew A. Chien, for his guidance through

each stage of my research and writing process. Your enthusiasm for innovation in computer

science inspires me to continue learning and working hard.

I would like to acknowledge my colleagues at Cerebras Systems for generously sharing in-

formation about the CS-1 and CS-2 with our research team. I would particularly like to

thank Ilya Sharapov for the many productive discussions we have had regarding the ideas

expressed in this thesis, Robert Schreiber for being our key advocate, and Michael James for

lending us his technical expertise.

In addition, I would like to thank my friends and family for their constant support. You

might not always understand what I am working on, but your presence is always comforting.

Thank you, all.

vi

ABSTRACT

As the once rapid improvement of general purpose computers slows due to the end of Moore’s

Law and Dennard Scaling, computer scientists must find novel methods to meet the world’s

hunger for computing power. The CS-2 by Cerebras Systems approaches this problem from

a fresh perspective. The CS-2 packs 850,000 processing elements (PEs) onto one 462 sq

cm Wafer Scale Engine. The combination of highly parallel computation, fast distributed

memory, and efficient communication makes the CS-2 a fitting machine to run one of the most

widely used algorithms in computational plasma physics, Particle In Cell simulations. We

discuss two viable mappings of Particle In Cell onto the CS-2, the Static Particle Method

and the Dynamic Particle Method. Using the Dynamic Particle Method, we present a

theoretical peak performance model and an empirical performance model based on a partial

implementation. The CS-2 achieves 3.67 PFLOPS and 1.72 PFLOPS in the theoretical and

empirical performance models, respectively. We also consider additional complications such

as load imbalance and particle movement between PEs. Accounting for these complications,

the CS-2 achieves 1.66 PFLOPS in the theoretical performance model. This is three orders

of magnitude greater performance than GPUs and CPUs on the market today. Our findings

show the potential for the CS-2 in computing Particle In Cell codes, and we hope to inspire

future implementations of Particle In Cell on the CS-2.

vii

CHAPTER 1

INTRODUCTION

As general purpose computers have reached the end of the monumental age of rapid and

consistent improvement driven by Moore’s Law and Dennard Scaling, computer scientists

must look to more specialized computing devices. These types of computers are called

accelerators and allow computers to achieve higher and faster performance by exploiting the

structure and operations of specific computations.

Graphics processing units (GPUs) are one example of an accelerator. GPUs are built with

more arithmetic-logic units (ALUs) than central processing units (CPUs) in order to exploit

parallelism and achieve higher operation rates. This is a desirable trait for computations

like machine learning, dense and sparse linear algebra computations, spectral methods, and

more.[1, 3] These are highly-relevant and impactful classes of computation in the modern-

age of technology. For example, machine learning opens up the uses of computers from just

computing to inferring. Given large amounts of data, which we have ample access to in

the modern day, the computer is able to not only perform operations but use the results of

those operations to inform future computations. The uses of this technology are unbounded

and have been steadily creeping into our lives for over a decade. Some examples include

self-driving cars, personalized ads online, virtual assistants, and facial recognition software.

Such a variety of potential uses drives companies to build bigger, better, and faster

accelerators. Currently, the primary tactic for solving large parallel computations consists of

clusters of GPUs wired together and attached to an external memory system. Performance

on GPU clusters does not scale proportionally and much is lost in these cluster systems.[4]

Thus computer engineers are driven to explore novel ideas that will allow their accelerators

to tackle even the largest of problems.

One such approach, and the focus of this thesis, is wafer-scale processors. The word wafer

here refers not to a sweet, thin cookie, but a wafer of thin silicon used for the fabrication

1

of integrated circuits. A wafer is around 300mm in diameter and typically makes many

microcircuits that are later separated by wafer dicing and packaged as an integrated circuit.

A typical GPU is at most around 900mm2. A wafer-scale processor is one that utilizes the

entire 70,650mm2 wafer to make a single large chip. The motivation for this thesis is to

demonstrate the potential of a wafer-scale processor to achieve impressive performance on

impactful, real-world applications.

2

CHAPTER 2

THE CS-2 WAFER SCALE ENGINE

The CS-2, a system created by Cerebras Systems that packs powerful computing onto a single

462 sq cm Wafer Scale Engine (WSE), is a promising new approach to parallel accelerators.

Instead of cutting up a silicon wafer into tiny microprocessors, Cerebras Systems packs an

impressive 850,000 PEs onto one large chip. Figure 2.1 shows the CS-2 and the WSE it

contains. The CS-2 houses the WSE-2 along with cooling mechanisms and power supply.

All compute-hardware is located on the WSE-2.

Figure 2.1: The CS-2 (left) houses the WSE-2 (right) along with cooling mechanisms and
power supply. All compute-hardware is located on the WSE-2. The WSE-2 is shown next
to a hockey puck for size comparison. The WSE-2 is 8.5 inches on both sides. The CS-2 is
15 Rack Units. Photos Courtesy of Cerebras Systems.

The strength of the WSE lies in its impressively low memory latency and network commu-

nication cost. The network fabric can communicate with all 850,000 PEs without ever leaving

the chip. This mechanism gives the CS-2 a memory bandwidth of 20 Petabytes/second and

a 27.5 Petabytes/second fabric bandwidth. These are the numbers marketed by Cerebras

Systems and confirmed by independent benchmarking done by our research group. Table

2.1 gives an overview of the CS-2 compared to its first-generation version, the CS-1.

On this oversized chip is a highly parallel, distributed memory architecture. All memory

within the CS-2 is on-chip, producing more memory bandwidth, single cycle memory latency,

3

Table 2.1: The newly announced CS-2 more than doubles the potential of the first-
generation CS-1. Although the physical size of the system stays the same, the massive
increase in core count is thanks to the decrease in IC Process, allowing Cerebras Systems to
fit 2.1 times more PEs on the WSE-2.

and lower energy cost for memory access. Each PE sits on what Cerebras calls a tile. Every

tile contains the processor, memory, and a router. Figure 2.2 diagrams the structure of

a tile. There is no shared memory that all PEs can access. There is no central PE that

directs other PEs. Each of the 850,000 PEs work in parallel, managing its own memory, and

communicating with one another through the 2D-mesh interconnection fabric. In addition,

each PE can be individually programmed.

The router is bidirectionally linked to the processor and the routers of the four neighboring

tiles. Each of the five links can be used in parallel on every cycle. The router has hardware

queues for its connection to the core and for each of a set of virtual channels, avoiding

deadlock. There are 24 virtual channels on each PE, and all or a subset of them can be

configured during compile time. No runtime software is involved with communication. All

arriving data is deposited by the hardware directly into memory or other desired location.

Routing is configured during compilation and sets up any routes needed for communication

4

between potentially distant PEs.

Figure 2.2: The WSE consists of a 2D grid of tiles. Each tile holds a processor, its memory,
and a router. The router connects the tile to its North, South, East, and West neighbors.

Each tile holds a modest 48 KB of static random-access memory (SRAM). This novel PE

architecture enables fast local coupling of communication with local computation, allowing

the CS-2 to move three bytes to and from memory for every floating point operation (FLOP).

Compute rate, memory bandwidth, and communication bandwidth are closely comparable

on the CS-2, freeing it from the barrier of slow memory access in von Neumann architectures.

Clearly, the CS-2 introduces a new and capable chip layout. The instruction set on the

CS-2 is also quite unique. The instruction set can operate on 16-bit integer, 16-bit, and

32-bit floating point types. For 16-bit operands, floating point adds, multiples, and fused

multiply accumulates (FMAC) can occur in a 4-way SIMD manner. The instruction set

supports SIMD operations across subtensors of four dimensional tensors. The CS-2 includes

hardware for tensor addressing, allowing the instructions set to efficiently access tensor data

5

in memory. This replaces the need for nested loops, eliminating any loop overhead. Tensor

operands can have more than four elements and so the instruction can execute for multiple

cycles. Instructions with tensor operands can run synchronously or as an asynchronous

background thread. There is no context switch overhead. The background thread uses

registers and memory as assigned by the programmer or compiler in the instruction. These

may not be overwritten until the thread terminates. Any subsequent computations can be

delayed until the thread terminates. The core supports nine concurrent threads of execution.

Scheduling is performed directly by the hardware, allowing efficient and simultaneous data

movement.

Table 2.2: The CS-2 compared to the IBM Blue Gene/Q petascale supercomputer located
at the Argonne National Laboratory. Although now retired, the IBM Blue Gene/Q ranked
number 22 on the Top500 list of supercomputers in November 2019.

The WSE has already shown much promise in tackling large, complex parallel problems.

In late 2020, Rocki et al. demonstrated the breakthrough performance on regular finite

difference (stencil) problems achieved by the CS-1. They implemented a BiCGStab solver

for a linear system arising from the 7-point discretization of a partial differential equation on

a 3D mesh. For a 600-by-595-by-1536 mesh, they measured a run time of 28.1 microseconds

per iteration. Every iteration required 44 operations per meshpoint resulting in an achieved

6

performance of 0.86 PFLOPS.[7] From these numbers, we estimate a clock rate of roughly 1

GHz for the CS-1 and assume the same for the CS-2.

In this thesis, we present another application that benefits from the highly parallel,

distributed memory, wafer scale architecture. We present a performance model of a Particle

In Cell program and compare it to implementations of Particle In Cell on GPU clusters.

7

CHAPTER 3

PARTICLE IN CELL

Particle In Cell, commonly referred to as PIC, is an algorithm used in plasma physics to

simulate particle movement and interaction. PIC simulation is one of the most widely

used methods in computational plasma physics. It has been used to successfully study

laser-plasma interactions, electron acceleration, and ion heating in the auroral ionosphere,

magnetohydrodynamics, magnetic reconnection, and more.[5]

As one may recall from an introductory physics class, charged particles repel or attract

each other due to an electric field that they create. Calculating the electric field and forces

for a system of two particles is a simple matter of solving a few equations. However, because

of its quadratic growth, any system beyond a dozen particles quickly becomes cumbersome.

PIC introduces a shortcut − reducing the computation cost by modeling interaction through

an electric field, and by localizing the electric field computation into an Eulerian (stationary)

grid of mesh cells.

Particles sit within a space that is divided into a grid of cells. The following is a brief

overview of the PIC algorithm. A more detailed description of each step is given in Section

5.

1. Find the charge density within each cell by counting how many particles are in the cell

and weighing them by their distance from the corner nodes.

2. From the charge density, calculate the electric potential at each node - this involves

solving a finite difference equation.

3. Based on the electric potential, compute the electric field.

4. Interpolate the electric field of the cell onto the particle then compute acceleration and

update position.

8

5. Repeat

Due to the locality of computations created by separating the space into cells, PIC can

benefit greatly from parallelization. PIC has been previously implemented on GPUs and

GPU clusters, offering a significant performance gain compared to CPUs.[8] However, the

forced locality introduces an increased need for communication, a stated strength of the

CS-2. Calculation of electric potentials rely on values from adjacent nodes, and particle

updates rely on the electric fields held at particular nodes. The combination of highly

parallel computation, efficient communication, and the demonstrated ability to perform fast

stencil computations makes the CS-2 a fitting machine to run PIC codes.

Even so, a key feature of PIC is the ability to achieve parallelism across the mesh as

well as the particles. These two separate bases of parallelism present challenges to achieving

good scaling when they fail to align spatially. In the next section, we discuss implementation

design and mappings that address these challenges.

9

CHAPTER 4

DESIGN

Mapping this problem onto the CS-2 is not trivial and has a large impact on performance. A

key feature of PIC is the ability to achieve parallelism across the mesh as well as the particles.

In the ideal case when particle and mesh parallelism align, meaning particle workload and

mesh workload are both balanced across the PEs of the machine, the CS-2 will be able to

achieve its best performance. We consider potential mappings to achieve this.

We proceed with a straightforward mesh mapping by directly mapping the 2D grid of

mesh cells onto the 2D grid of PEs on the CS-2. For simplicity, each PE will be responsible

for one mesh cell. An example mapping of a 3-by-3 mesh onto a 3-by-3 grid of PEs is shown

in Figure 4.1. This mapping is intuitive for local calculations which, luckily, comprises most

of our PIC steps. As we will see later, the Charge Density and Interpolate steps are quite

convenient in this case.

Figure 4.1: A direct mapping of a 3-by-3 grid of mesh cells onto an array of PEs.

Now that we have assigned regions to PEs, we turn to the problem of assigning particles

to PEs. Recall that the CS-2 is a distributed memory system, and therefore cannot rely

10

on some shared memory to keep track of all the particles. Particle data will be distributed

amongst the PEs. We will consider two potential methods.

1. Static Particle Method - Similar to how we evenly divided our space to assign to PEs,

we can evenly divide our list of particles and assign groups to PEs.

2. Dynamic Particle Method - Somewhat more intuitively, we can assign particles to the

PE whose region they are currently located.

We now consider the benefits and drawbacks of these two methods.

4.1 Static Particle Method

The mapping of the Static Particle Method is consistent with our region mapping. It di-

vides the particles up evenly and assigns them to the PEs. Parallelism across the mesh and

parallelism across the particle are both achieved. This would help ensure an even distri-

bution of workload. However, unlike regions, particles are dynamic. This means that in

order to update particle positions, the PE that owns the particle would need to locate and

communicate with the PE that is responsible for the particle’s region. This would strain the

communication fabric since at every timestep and for every particle on every PE, two PEs

that are potentially very far away from each other would need to communicate. The added

communication work for each particle would cause the performance of our program to scale

poorly with more particles and more mesh cells. In addition, charge density would also be

difficult to calculate since PEs would need to perform an all-to-all communication in order

to account for all particles in its region.

4.2 Dynamic Particle Method

The Dynamic Particle Method is more intuitive in the sense that as the particles move

around in the 2D mesh, the particle data follows by moving around in our 2D grid of PEs.

11

This method avoids the expensive communication present in the Static Particle Method.

Particle acceleration now becomes a local computation. For each particle in its region, the

PE computes acceleration based on the electric field of its region and the position of the

particle within its region. Both of these are conveniently stored locally.

However, particles will occasionally move out of its PE’s region. In this case, the PE

will need to transfer the particle’s data to the PE responsible for the new region. Evidently,

some amount of communication is still necessary, although certainly not as much as the

Static Particle Method requires. It is not unreasonable to assume that the timestep is small

enough that no particle will move farther than one region away from its last location. In

other words, a particle will only ever move over to an adjacent region, never further. A PE

will only ever have to transfer data to a direct neighbor, decreasing communication latency.

The movement of particles also creates the additional complexity of finding a data struc-

ture that will allow PEs to efficiently add and remove particles from its local list. Data

structure type and efficiency will impact the performance of the program. A linked list

would be a good candidate for this. In our performance model, we assume the use of an

efficient data structure.

A larger problem this method faces is imbalance of workload across PEs. PEs with more

particles in its region will have to do more work, leaving other PEs to sit idle for some time.

This is an example of when particle and mesh parallelism do not align. There are load

balancing tactics that can be used to alleviate this problem. Overloaded PEs can pass some

of its workload off to a nearby idle PE. This would improve our rate of performance, but add

overhead in workload management. Another possible tactic is to pause the program when

a certain threshold of imbalance is reached, and re-partition the grid into a non-uniform

Cartesian grid with more density in high-concentration particle regions. In other words,

regions with higher particle density will be further divided and spread out onto more PEs,

balancing the workload. Rate of performance would benefit, but a large overhead would

12

be added every time the program halts to re-partition the grid. Workload sharing and re-

partitioning will not be considered in our performance model, but may be an interesting

direction for future work.

There is also the concern of overloading the memory on a PE. PEs only have 48KB of

SRAM to work with. In order to saturate the CS-2, we will certainly be working with more

than 48KB worth of particle data. It is possible that particles will congregate on a single PE,

and overload its memory. To address this we will need to be conservative with the number

of particles we can put on the CS-2. An estimate on maximum problem size is discussed in

Section 6.

Lastly, the Dynamic Particle Method restricts the types of boundary conditions we can

have. It would be very inefficient to implement a periodic boundary (one where particles

that move past the edge of the space wrap around and appear on the opposite side). This is

because when a particle wraps around, the PE would have to transfer the particle data across

the PE mesh. For this reason, the Dynamic Particle Method is not a good fit for problems

that utilize a periodic boundary condition. Luckily, periodic boundaries are not commonly

used in particle physics simulations, because they simulate a sort of infinite, repeating space,

not often present in the real world.

Ultimately, we believe that the Dynamic Particle Method will produce a better perfor-

mance. The communication overhead required by the Static Particle Method is not worth

its simplicity. In the next section, we move on to an analysis of PIC using the Dynamic

Particle Method.

13

CHAPTER 5

PARTICLE IN CELL ON CS-2

In this section, we analyze a theoretical performance model accounting for potential laten-

cies and using peak computation rates achievable on the CS-2. In addition, we present a

partial implementation of PIC on the CS-2 to provide an empirical, but currently imperfect,

performance model.

5.1 Parameters

The performance of any PIC program depends mainly on the number of particles and the

mesh size. In our performance model we will be considering an input size of N particles on

an Mx-by-My mesh. Mapping PIC onto the CS-2, we will only need to consider Np, the

number of particles on a specified PE, and the Px-by-Py array of PEs we will be working

with. In the ideal case where PEs have perfectly balanced workloads, we will have Np =

NPx * Py. Unless otherwise specified we will use a mesh size of Mx*My = Px*Py = 850,000,

which is the number of PEs on the CS-2.

Other relevant input information include the timestep (time that passes between each

iteration), number of iterations, and space dimensions (area of space particles are able to

occupy). We will denote these parameters as dt, I, and X-by-Y respectively. Although these

inputs are important in a full run of PIC, they will rarely come up in our performance model

since we will only be measuring a single iteration and scale up from there.

Let us also establish the representation of a particle in memory. We will represent a

particle as a struct detailing the particle ID, the particle’s current position, and the particle’s

current velocity.

14

Table 5.1: A list of relevant input parameters the notation used to denote them.

Figure 5.1: Particle represented as a struct in C. Particle.position[0] represents the
x-coordinate of the particle, and Particle.position[1] represents the y-coordinate. Parti-
cle.velocity can be interpreted analogously.

5.2 Preprocessing

As decided in Section 4, we will adopt the Dynamic Particle Method. Given a list of particles

as our input parameter, we must create Px*Py lists to load onto the CS-2. Each PE will

receive a reduced list consisting of particles residing in its region. Positions of particles on

this list must also be offset by the PE’s lower left boundary. This makes the position of the

particle relative to the PE, and is necessary in order to avoid the PE needing to reference its

own location on the WSE. This saves computation in the Charge Density and Interpolation

steps.

Now we are ready to load the preprocessed input data onto the CS-2.

15

Figure 5.2: The blue square represents the PE’s region. The white circle represents a
particle with a global location of (px, py). The green circle represents the bottom left node
of the PE, located globally at (nx, ny). In preprocessing, we will calculate the offset position
as (px-nx, py-nx) so that the coordinates are relative to the bottom left node of the PE.

5.3 Charge Density

The charge density at each node is calculated as the sum of all charges in adjacent cells

weighted by their distance from the node. Each PE is responsible for a rectangular region

with four corner nodes. For example, the green node in the bottom left corner of the PE

region in Figure 5.3 would receive a contribution from the particle (colored white) equal to

its charge multiplied by AG divided by the area of the entire region, where AG = (Sx−x) ∗

(Sy − y). The purple, red, and yellow nodes would receive a contribution from the white

particle calculated analogously with AP , AR, and AO respectively. Notice that nodes closer

to the particle receive a more heavily weighted contribution, and nodes farther away receive

a lighter contribution. In addition, the sum of all four contributions produced by a particle

is equal to its charge.

The PE calculates and sums the contribution for every particle in its region for each of

16

Figure 5.3: The blue square represents the PE’s region. The white circle represents a
particle with a global location of (px, py). The green circle represents the bottom left node
of the PE, located globally at (nx, ny). In preprocessing, we will calculate the offset position
as (px-nx, py-nx) so that the coordinates are relative to the bottom left node of the PE.

the four corner nodes. Because these corners overlap with adjacent PEs, we then have to

add up the contributions of the four adjacent PEs to arrive at the final charge density of the

node. This can be done in post processing since the data will have to be reloaded in between

this step and the next.

In total, this requires 10 operations per particle. Theoretically, with proper data access

patterns and thoughtful use of FMAC operations, we should be able to achieve 4 operations

per cycle. We would then be able to complete this step in 2.5*Np cycles.

Our implementation of this step does not quite reach this performance. Running the

program on a CS-2 simulator showed that we are able to complete this step in 10*Np cycles,

achieving only 1 operation per cycle per PE. The culprit of the inefficiency is in the accu-

mulation steps. Since we are summing into a register, we do not receive the speed up that

tensor operations allow. This slows our program down due to the need to read and write

17

into the same register Np times. However, there are likely more efficient ways to implement

this step using FMAC operations that we have yet to explore. Therefore, we present this

implementation only as an empirical example and will continue considering the theoretical

performance of 2.5*Np cycles.

5.4 Finite Difference

Using the charge densities, we can compute the electric potential at each node. This is done

by solving the following system of equations for φi,j , the electric potential at node (i,j). Note

that x represents the width of the mesh cell, y represents the height of the mesh cells, n0

represents the average charge density, and ni,j represents the charge density at node (i,j).

φi−1,j + 2φi,j + φi+1,j

∆2x
+
φi,j−1 + 2φi,j + φi,j+1

∆2y
= ni,j − n0

To solve this differential equation, we use a finite-difference method. We approximate

the performance of a 2D iterative solver on the CS-2 by implementing a stencil program

that performs a single iteration. This program performs 9 operations. Unfortunately, the

iterative nature of this program means it will at most be able to perform one operation per

cycle since it must wait for input from other PEs. Thus it will require 9 cycles plus 11

cycles of communication latency. With theoretical peak performance, this step should take

20 cycles. However, our implementation of this step runs in 30 cycles.

We estimate that iterative solvers take less than 50 iterations to converge. This is sup-

ported by estimates made by Marjanovic et al. at the High Performance Computing Center

Stuttgart.[6] Although a rough approximation, this gives us a generous estimate of 800 op-

erations and 1,500 cycles to complete this step.

18

5.5 Electric Field

Now that we have the electric potential at each node, calculating the electric field is relatively

simple. At every node, we solve the following two equations:

Ex,i = −
φi+1,j − φi−1,j

2∆x
Ey,j = −

φi,j+1 − φi,j−1

2∆y

We implemented this by loading the electric potential at each node onto its corresponding

PE. The PEs then communicate with its direct North and South neighbors to receive φi,j+1

and φi,j−1 to calculate Ey, and East and West neighbors to receive φi+1,j and φi−1,j to

calculate Ex. This gives us the electric field at each node.

The theoretical performance and measured performance is the same for this step. We

implemented this step with 5 operations. It takes 14 cycles to run. The bulk of the runtime

of this program is consumed by communication latency.

5.6 Interpolate

To find the electric field at a particle’s location, we interpolate the electric fields at the corner

nodes of its region. This is often referred to as a bilinear interpolation. This step is essentially

the inverse of the Charge Density step. Looking again at Figure 5.2, the green node will have

a contribution to the electric field at the particle equal to its electric field multiplied by AG

divided by the area of the entire region, where AG = (Sx−x) ∗ (Sy− y). The white particle

would receive a contribution from the purple, red, and yellow nodes calculated analogously

with AP , AR, and AO respectively.

This step requires 23 operations per particle to perform. With peak performance and

using FMAC operations, we could theoretically complete this step in 3.75*Np cycles. Our

implementation of this program completes in approximately 6*Np cycles, achieving between

2 to 4 operations per cycle. Despite requiring more operations, this program is more efficient

19

than the Charge Density program since we are no longer accumulating Np times into a single

register. We now only read from that register Np times and write into Np particles structs.

However, our implementation suffers from inefficient memory bank access patterns.

5.7 Particle Update

The particle update step is quite straightforward. Given the acceleration of each particle,

we update position and velocity according to these elementary physics equations:

vf = v0 + at xf = x0 + vt

This step takes 8 operations per particle: 2 operations each to update x-velocity, y-

velocity, x-position, and y-position. On this program, the CS-2 is able to achieve 8 operations

per cycle, the theoretical peak performance, using FMAC. We complete this step in Np cycles.

20

CHAPTER 6

PERFORMANCE MODEL AND RESULTS

6.1 Problem Size

First, it is productive to discuss the problem size that will saturate the CS-2 without over-

loading its memory. The CS-2 holds 850,000 PEs, in a rectangular grid. Our analysis assumes

that each PE corresponds to one mesh cell. This means that the finest mesh we can support

is a 900 by 900 grid on the CS-2. It is possible to restructure the mapping so that PEs can

handle multiple mesh cells, or even a column of mesh cells in a 3D PIC implementation.

This is further discussed in Section 7.

Each of the 850,000 PEs on the CS-2 has 48KB of on-chip memory. While this makes

memory latency very low, it severely limits the size of problems we can put on the CS-

2. Just how limited is our problem size? The piece of computation that is most memory

intensive is the particle update step where we update particle position and velocity based

on acceleration. In this step, we need to keep a particle ID, x-coordinate, y-coordinate, x-

velocity, and y-velocity for each particle. Assuming each piece of data is one word (16 bits),

we need to store 10 bytes per particle. 10 bytes per particle and a maximum of 48KB on

the PE means that we can have a maximum of 4800 particles on any single PE. The CS-2

has approximately 850,000 PEs, bringing us to a total of 4.08 billion particles over the entire

chip.

In order to avoid overloading any single PE due to particle congregations, we need to

restrict these numbers even further. We will reduce the number of particles loaded on a

single PE at the start of a simulation to 10% of the calculated maximum. This brings us

down to 480 particles on any single PE and 408 million particles across the entire chip.

21

Table 6.1: Number of Operations per PE by step.

6.2 Performance Model

Putting all the steps together, we approximate that a PIC implementation on the CS-2

will require 41 ∗ Np + 405 operations per PE, or (41 ∗ Np + 405) ∗ (850, 000) across the

entire system. Theoretically, this program could run in 7.25 ∗Np + 1014 cycles on the CS-

2. However, our implementation takes 17 ∗ Np + 1514 cycles, not including preprocessing

or intermediate setup between steps. Using our estimate of a 1 GHz clock rate, the total

runtime of this PIC program will be (7.25 ∗Np+ 1014) billion seconds and (17 ∗Np+ 1514)

billion seconds in the theoretical and observed performance model, respectively. This gives

us a performance rate of ((41 ∗ Np + 405) ∗ 850000)/(7.25 ∗ Np + 1014) GFLOPS and

((41 ∗ Np + 405) ∗ 850000)/(17 ∗ Np + 1514) GFLOPS, respectively. These numbers are

better summarized in Table 6.3. Graph 6.1 shows the theoretical and observed performance

given a range of problem sizes. The CS-2 performs better with larger problem sizes because

it is able to utilize more of its compute power. On our maximum problem size of 408 million

particles, the CS-2 can achieve 3.666 PFLOPS in our theoretical performance model and

1.723 PFLOPS in our observed performance model.

22

Table 6.2: Number of cycles per PE needed to complete each step.

Table 6.3: Performance Summary of PIC program on the CS-2. Assumes all 850000 PEs are
utilized.

23

Figure 6.1: Plot of theoretical and observed performance based on problem size. Np = 408
is the maximum problem size.

24

CHAPTER 7

DISCUSSION

7.1 Additional Complications

7.1.1 Load Imbalance

There are some additional complications that are worth addressing, the first of which is load

imbalance. It is usually unnatural for particles to congregate. In an open space, particles will

repel and attract each other in such a way that causes them to spread out, not congregate.

Regardless, it is unlikely that we will have a perfect balance of particles between PEs at

every iteration. Load imbalance is an important factor in determining valid input sizes that

reduce the probability of overloading PE memory as well as performance. The performance

of the CS-2 is only as fast as the slowest PE. In the case of PIC, the slowest PE is the

PE with the most particles in its region. Graph 7.1, shows how load imbalance can have a

negative impact on performance.

7.1.2 Particle Data Transfers

The second complication we consider is the possibility of particles moving across PE bound-

aries. When this happens, the particle data must be transferred to the PE whose region it is

now in. Typically, with a reasonably small timestep, particles will not move farther than one

cell size in one iteration. In fact, with a small enough timestep, particle movement across

boundaries is not likely at all. However, if a particle does move out of its current region,

it will end up in one of the adjacent regions, and the particle’s data will only need to be

transferred to one of the neighboring PEs.

A program that performs this particle data transfer would first have to check whether the

particle’s position is out of the PE’s boundaries in the north, east, west, or south directions,

25

Figure 7.1: Load imbalance can have a dramatic impact on performance. This graph com-
pares the theoretical performance given different ratios of load imbalance. Mp = maximum
number of particles on any given PE. Np = Average number of particles per PE.

and if it is, send the particle’s data to the appropriate PE. In our implementation of this

step, it takes 14 operations to check a particle’s position, and 5 operations to send a particle

data out if necessary. The extra 5 operations it takes to send particle data out is negated

by the fact that particles that are out of bounds will often not need to complete the 14

operations of conditional checks. Once one of the conditionals is satisfied, the PE will send

the data out without finishing the rest of the conditional checks. Therefore we estimate that

this step will take 14*Np operations overall. Our run of this program takes 20 cycles per

particle.

In addition, once a particle’s data is transferred out of the PE’s memory, it must be

“removed” to avoid performing future updates on it. The naive method would be to simply

mark the particle by zeroing out the particle ID. Any new particles transferred into the region

would simply be appended to the end of the PE’s particle list. This is an inefficient use of

26

space, and many clever data structures such as linked lists would be better candidates.

However, due to the low-level programming required to work with the CS-2, we prefer a

method that is simple to model. To avoid filling up our particle list with null particles and

running out of space, we introduce a condense step.

In the condense step, the PE shifts the next “active” particle’s data into the last zeroed-

out particle space. Using a two pointer method, the PE would check if the particle ID is

zeroed-out, and if so, place a pointer there. With the second pointer, continue along the

particle list until it reaches an “active” particle. Then move the active particle data into

the first pointer location. In the worst case, the PE moves every piece of particle data once,

and eight operations will be needed per particle (one conditional operation and one move

operation per piece of particle data). Taking advantage of the CS-2’s SIMD architecture

allowing it to move four words per cycle, we estimate that this step will take three cycles

per particle.

How often we need to perform a condense step depends on how quickly PEs fill up their

particle lists. We settle for an overestimate and perform a condense step at every iteration.

Factoring these complications in, we update our performance model. Instead of taking

the average number of particles (Np), we instead take the maximum number of particles on

any given PE (Mp).

7.2 Mapping Modifications

We began the formulation of our performance model with the assumption that each PE will

be assigned one mesh cell. This restricts the size and shape of the mesh to the number and

arrangement of PEs on the CS-2. There are modifications that can be made to accommodate

larger mesh sizes.

The first modification is blocking. We can place a rectangular array (or block) of mesh

cells onto a single PE. The overall layout of the mapping would be preserved. However, it

27

Table 7.1: Updated PIC performance model taking into account load imbalance and particle
data transfer.

Figure 7.2: PIC Performance after accounting for particle movement.

28

would impact the PE’s workload. Suppose we use blocks of size B-by-B. The maximum

number of particles would remain the same. The Charge Density step would gain added

complexity with more nodes to keep track of. However, the overall number of operations

and latency would remain the same since it relies solely on the number of particles on the

PE. The Finite Difference step would acquire additional communication latency. Each PE

would have to communicate 4 ∗ B values and receive 4 ∗ B values instead of just 4 each.

The number of operations performed on each PE would also increase by a factor of B2 (the

number of mesh cells on the PE). Assuming we can achieve 4 operations per cycle, this would

imply an increase in latency by a factor of 2 ∗B+ 0.25 ∗B2 for this step. The Electric Field

step would receive the same increase in work and latency. Similar to the Charge Density

step, the Interpolation and Particle Update steps’ performance would remain unchanged.

Table 7.2 shows the performance result of blocking.

The second modification we discuss is tessellation. Similar to blocking, tessellation places

multiple mesh cells on a single PE. However, instead of a continuous block of mesh cells, we

“fold” the mesh onto the PEs, achieving continuity across PEs, but not within PEs. This

“folding” is better described in a diagram. Figure 7.1 shows a tessellation of a 9-by-9 mesh

grid onto a 3-by-3 array of PEs. Tessellation, like blocking, would have no effect on the

work or latency of the Charge Density, Interpolation, or Particle Update steps. However,

tessellation would require B2 times more values communicated in both the Finite Difference

and Electric Field steps, as well as B2 more operations to perform. Assuming a performance

of 4 operations per cycle, this would imply an increase in latency by a factor of 0.5 ∗ B2.

Figure 7.3 shows how performance is affected by the block size, B.

7.3 Comparing Against Other Machines

First, we isolate the Finite Difference step to compare its performance to more traditional

HPCG code running on a CPU. We would like to see a performance improvement propor-

29

Figure 7.3: A 9-by-9 grid of mesh cells tessellated onto a 3-by-3 grid of PEs. The mesh grid
is “folded” onto the array of PEs. This mapping preserves adjacencies of mesh cells, keeping
communication patterns consistent with non-tessellated mappings.

Table 7.2: Compares the Total Work and Total Latency between the original mapping, block
mapping, and tessellation mapping.

30

Figure 7.4: Performance worsens with larger B. Blocking produces better performance than
tessellation. In all cases, blocking and tessellation perform worse than the original one mesh
per PE mapping. Thus, we recommend only using blocking or tessellation when the mesh
size is larger than 850,000.

tional to the number of PEs, but anticipate something closer to 1000 times. Using the HPCG

benchmark program provided by the Innovative Computing Laboratory at the University of

Tennessee[2], we benchmarked the performance of an Intel Core i7-8700K CPU with 6 cores

running at 3.7 GHz. We chose a problem size consisting of a 208-by-312-by-208 matrix, en-

suring that it would fit nicely into 16 GB of memory. This program ran in 70.0071 seconds,

performing 250.961 billion floating point operations, resulting in a performance rate of 3.53

GFLOPs per second.

The CS-2 performs the Finite Difference step with this problem size in 1500 cycles,

performing 680 million floating point operations, resulting in a performance rate of 453.3

TFLOPs per second. This is a somewhat unsatisfying comparison seeing as the HPCG

benchmark implements a 3D iterative solver running on a 6 core CPU while our model is

of a 2D iterative solver running on 850,000 PEs. However, it is difficult to find or access

31

machines that can fairly compare to the CS-2.

A common, and widely studied, parallel device is a GPU. Like the CS-2, GPUs are a

highly parallel accelerator. Unlike the CS-2, however, GPUs utilize off-chip, shared memory.

GPUs also lack the wafer scale aspect that differentiates the CS-2 from almost all other

machines and delivers its unmatched communication speeds. With this said, GPUs are much

more common-place than CS-2s currently are and have inspired many PIC implementations.

We compare our performance model to a PIC implementation on the Kepler GPU archi-

tecture by Shah et al. From a run of their PIC implementation, they measured the Nvidia

Tesla K40, GTX 690, and the Quadro K620 to perform 1.464 TFLOPs, 117 GFLOPs, and

25 GFLOPs per second respectively on an input size 5.24 million particles on a 512-by-512

mesh.[8] The CS-2 outperforms the Tesla K40 with a 1000x speed up. Again, this is not an

entirely fair comparison. The CS-2 costs much more than a Tesla K40, and is much larger

with more PEs. However, it is important to note that performance of GPU clusters do not

scale proportionally to the number of GPUs in the system. Doubling the number of GPUs

used will not double the performance. For this reason, the CS-2 as a whole system will

perform better than a GPU cluster with a comparable processor count.

32

Figure 7.5: A log scale graph comparing the performance of the Tesla K40, GTX 90, and
Quadro K620 to the CS-2.

33

CHAPTER 8

CONCLUSION

In this thesis we explored the viability of PIC codes on the CS-2. We considered possible

ways to map the problem onto the machine, and presented theoretical performance models.

We also partially implemented PIC on the CS-2 to get empirical performance results. At

the maximum problem size of 408 million particles and 850,000 mesh cells, the CS-2 has

the potential to achieve 3.67 PFLOPS. In our implementation, we estimate a performance

of 1.72 PFLOPS on the same problem size. Because this is only a partial implementation,

it is worthwhile to consider both the empirical and theoretical numbers due to potential

performance improvements in future implementations. We also account for potential com-

plications such as load imbalance and particle movement across PE regions. Factoring this in

and estimating the additional latency of a particle transfer step, we estimate a performance

of 1.66 PFLOPS. A decrease in performance from our initial theoretical estimates, however

still dominating in comparisons to other machines such as CPUs and GPUs.

The particle implementation and empirical results we gathered showcase the potential

of the CS-2 beyond theoretical projections. It sets the baseline for future implementations.

If the numbers presented in this paper aim to accomplish anything, it is to inspire future

implementations and investigations into PIC on the CS-2. The design and mapping consid-

erations are essential elements to any PIC implementation on the CS-2 and will serve future

research on this topic well.

Clearly, a complete implementation of PIC with attention to efficiency will allow for more

concrete performance data that is more readily comparable to other PIC performance models

and solidify the strength of the CS-2 on PIC computations. A feature of a more efficient

implementation may include workload sharing between PEs to mitigate latency introduced

by workload imbalance. We strongly encourage future research to pick up where this thesis

ends.

34

In addition, difficulty presented itself in the pursuit for machines that can be fairly

compared to the CS-2, a high-end and novel piece of technology. Any machine that might

be comparable to the CS-2 is, like the CS-2, expensive and difficult to access, and as of yet,

have not seen any published PIC implementations. If better comparisons can be found, this

would strengthen the argument that the CS-2’s impressive performance on PIC is due to its

unique architecture rather than a result of expensive machinery.

35

REFERENCES

[1] Chen, F., and Shen, J. A gpu parallelized spectral method for elliptic equations in
rectangular domains. Journal of Computational Physics 250 (10 2013), 555–564.

[2] Dongarra, J., Heroux, M., and Luszczek, P. High-performance conjugate-
gradient benchmark: A new metric for ranking high-performance computing systems.
International Journal of High Performance Computing Applications 30 (08 2015).

[3] Fatahalian, K., Sugerman, J., and Hanrahan, P. Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication. pp. 133–137.

[4] Kindratenko, V. V., Enos, J. J., Shi, G., Showerman, M. T., Arnold, G. W.,
Stone, J. E., Phillips, J. C., and Hwu, W.-m. Gpu clusters for high-performance
computing. In 2009 IEEE International Conference on Cluster Computing and Work-
shops (2009), pp. 1–8.

[5] Liu, G., and Liu, M. Smoothed Particle Hydrodynamics: A Meshfree Particle Method.
01 2003.

[6] Marjanović, V., Gracia, J., and Glass, C. Performance modeling of the hpcg
benchmark. pp. 172–192.

[7] Rocki, K., Essendelft, D. V., Sharapov, I., Schreiber, R., Morrison, M.,
Kibardin, V., Portnoy, A., Dietiker, J. F., Syamlal, M., and James, M. Fast
stencil-code computation on a wafer-scale processor, 2020.

[8] Shah, H., Kamaria, S., Markandeya, R., Shah, M., and Chaudhury, B. A
novel implementation of 2d3v particle-in-cell (pic) algorithm for kepler gpu architecture.
pp. 378–387.

36

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	The CS-2 Wafer Scale Engine
	Particle In Cell
	Design
	Static Particle Method
	Dynamic Particle Method

	Particle In Cell on CS-2
	Parameters
	Preprocessing
	Charge Density
	Finite Difference
	Electric Field
	Interpolate
	Particle Update

	Performance Model and Results
	Problem Size
	Performance Model

	Discussion
	Additional Complications
	Load Imbalance
	Particle Data Transfers

	Mapping Modifications
	Comparing Against Other Machines

	Conclusion
	References

