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Abstract 

 

As the once rapid improvement of general purpose computers begins to slow due to the 

end of Moore’s Law and Dennard Scaling, computer scientists must look to more 

specialized computing devices called accelerators. One frequent use of accelerators is in 

machine learning. Wafer-scaler processors are an idea that has floated around the 

technology industry for a while and has been attempted before. Cerebras Systems, a Los 

Altos, California based startup, has successfully designed and produced a wafer-scale 

machine learning accelerator. The benefits of condensing all the components of a processor 

onto a single chip is faster and more efficient performance since components are more 

densely packed and off-chip wiring introduces longer latency. Cerebras optimizes their 

Wafer-Scale Engine (WSE) by designing the chip with AI-optimized cores, flexibility in 

programming, and smaller but faster on-chip memory. Similar to companies that had 

previously attempted building wafer-scale chips, Cerebras faced numerous of engineering 

challenges. These challenges included yield, chip packaging, power delivery, and system 

cooling. The WSE seems to be a promising approach to machine learning accelerators and 

already has some big customers like the Argonne National Laboratory. However, Cerebras 

has yet to disclose any benchmark data so it is difficult to compare its performance to more 

traditional machine learning accelerators. 
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Introduction 

As general purpose computers have reached the end of the monumental age of rapid and 

consistent improvement driven by Moore’s Law and Dennard Scaling, computer scientists must 

look to more specialized computing devices. These types of devices are called accelerators and 

allow computers to achieve better performance by exploiting the structure and operations of 

specific computations.  

Graphics processing units or GPUs are one example of an accelerator. GPUs are built with 

more arithmetic-logic units (ALUs) than central processing units (CPUs) in order to exploit 

parallelism and achieve higher operation rates. Because of this atypical design, GPUs require 

programmers to build explicitly parallel programs in order to take full advantage of the 

accelerator’s benefits. In addition, GPUs are only really affective within its area of 

specialization. When running single thread programs, GPUs can actually perform ten times 

slower than a CPU thread. 

Accelerators are also frequently designed and used for machine learning. Currently, machine 

learning accelerators consist of many GPUs wired together and attached to an external memory 

system. Machine learning is considered to be at the forefront of the future of computing. 

Machine learning and artificial intelligence open up the uses of computers from just computing 

to inferring. Given large amounts of data, which we have ample access to in the modern day, the 

computer is able to not only perform operations but use the results of those operations to inform 

future computations. The uses of this technology are unbounded and have been steadily creeping 

into our lives for over a decade. Some examples include self-driving cars, personalized ads 

online, virtual assistants, and facial recognition software.  

Because of this great potential in uses, companies are eager to invest more time and money in 

pursuing machine learning. Thus computer engineers are driven to explore novel ideas that will 

give their machine learning product a leg up. Some approaches include field programmable gat 

arrays (FPGAs) that allow the customer to configure the integrated circuit after manufacturing, 

and application-specific integrated circuits (ASIC) which is an integrated circuit chip customized 

for a particular use, rather than intended for general-purpose use. As evidenced by these two 

examples, computer engineers are starting to develop hardware for specific uses instead of 

advancing the general-purpose computing technology we already have. [1] 

Another approach, and the topic of this report, is building wafer-scale processors. The word 

wafer here refers not a sweet, thin cookie, but a wafer of thin silicon used for the fabrication of 
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integrated circuits. Typically, one wafer makes many microcircuits that are later separated by 

wafer dicing and packaged as an integrated circuit. A wafer-scale processor is one that utilizes 

the entire wafer to make a single large chip. The motivation for this study is to explore this 

approach; the benefits of condensing the components onto a single chip, and the challenges that 

engineers faced while making this vision a reality.
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Summary and Discussion 

The Wafer-Scale Approach to Machine Learning 

The obvious benefit of the large size of the chip is the ability to fit an unprecedented 

amount of technology onto it. The Cerebras CS-1 boasts 1.2 trillion transistor and 400,000 AI 

optimized cores onto 46,225 square millimeters of silicon. Compare this to NVIDIA’s DGX-1, a 

supercomputer based on an 8 GPU cluster with integrated deep learning software. DGX-1 holds 

5,120 Tensor Cores and 40,960 CUDA Cores. NVIDIA’s Tesla V100, used within the DGX-1, 

holds 21 billion transistors and 5,120 CUDA Cores. The Tesla V100 is 815 square mm. Here is a 

table to comparing specifications of The CS-1 and DGX-1: 

 

 CEREBRAS 
WSE 

CS-1 DGX-1 
TESLA V100 

(SXM2) 
CHIP SIZE 46,225 sq. mm - - 815 sq. mm 
CHIP COUNT - 1 8 - 
TRANSISTER 
COUNT 

1.2 trillion 1.2 trillion 168 billion 21 billion 

CORES 400,000 AI 
optimized cores 

400,000 AI 
optimized cores 

5,120 Tensor / 
40,960 CUDA 

cores 

640 Tensor / 
5,120 CUDA 

cores 
MEMORY 18 GB on-chip 18 GB 512 GB 32 GB 
MEMORY 
BANDWIDTH 

- 9.6 PB/sec 900 GB/sec - 

INTERCONNECT 
BANDWIDTH 

- 100 PB/sec 300 GB/sec - 

TRANSISTOR 
SIZE 

16 nm - - 12 nm 

 

[2][3][4] 

The new chip size brings a lot of benefits that would be hard to achieve with the 

traditional technologies. Such a large chip is not comparable to other chips in the market but to 

entire clusters. As mentioned in the table above, CS-1 contains one WSE while DGX-1 contains 

a cluster of eight Tesla V100 chips. The on-chip memory puts gigabytes of data within one clock 

cycle of its cores. The interconnection fabric is fully on-chip and connects all cores allowing it to 

run orders of magnitude faster than the traditional method of connecting many chips together. 

Additionally, one large chip allows lower power and space usage compared to multiple small 

chips. 
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The large size of the chip allows mapping of the entire neural network onto the chip at 

once instead of running one layer at a time. Cerebras co-designed its software to be able to apply 

all the compute power of the chip to a single neural network problem at once. It accepts common 

machine learning frameworks such as TensorFlow and PyTorch. It then extracts the neural 

network from the framework and performs placement routing to map the neural network layers 

to the fabric. In order to do this, it sizes the neural network layers based on compute, memory 

and bandwidth needs. Larger layers need more resources, while smaller layers require less. 

Mapping of the entire neural network onto the chip allows for model parallelism and linear 

performance scaling. 

 Machine learning requires a very specific type of computation. Cerebra designed CS-1 to 

tackle some of the key features and problem areas of deep learning. Firstly, machine learning 

accelerators have to work with an enormous amount of data. Accelerators would have to be 

working with millions to billions of samples and perform billions to trillions of operations per 

sample. This quickly becomes a petascale to exascale level of computing. They way NVIDIA 

handles this abundance of data and computations is buy packing each Tesla V100 with thousands 

of Compute Unified Device Architecture (CUDA) cores that allows large amounts of data to 

move through the GPU and efficient parallel computing. CUDA cores, however were designed 

for graphics processing, not deep learning. To optimize the Tesla V100 for deep learning, 

NVIDIA included 640 Tensor cores on top of the thousands of CUDA cores. Tensor Cores can 

accelerate large matrix operations, perform mixed-precision matrix multiply, and accumulate 

calculations in a single operation. 

Cerebras addresses this issue in a similar way. But instead of only optimizing a fraction 

of cores for deep learning, all 400,000 cores in the CS-1 are AI optimized. Cerebras claims that 

in order for a core to be optimized for deep learning, it must be flexible because of how fast deep 

learning technology is progressing and evolving. The core must be able to adjust to these trends 

and remain useful as the industry moves forward. In addition, the core has to handle tensor 

operations efficiently and at high performance. These operations form the bulk of the compute of 

neural networks. In building the WSE, Cerebras included in the core a full array of general 

instructions with machine learning extensions, flexible general operations for control processing, 

and optimized tensor operations for data processing. The Cerebras core is a fully programmable 

core with a set of general instructions used for control processing. These instructions include 

arithmetic, logical, loads, stores, and branching. On top of these, Cerebras includes tensor 

operations that give high performance data processing. Notably, instructions can operate on 2D 

and 3D tensors directly as first class operands in the same way it would on registers. 
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Another property of deep learning that machine learning accelerators should account for 

is sparsity. Sparsity is the property that some of the model parameters have a value of zero. 

When this is the case, multiplications do not have to be performed. This is significant because 

multiplications comprise most of neural network computations. In addition, models can be 

represented in sparse matrix formats which are stored and transmitted compactly. [5] Cerebras 

has native sparse processing in its hardware. It uses data flow scheduling where all computes are 

triggered by the data. This allows the hardware to filter out all zeros and saves work and thereby 

saves power and improves performance. Cerebras emphasizes fine-grained execution data paths. 

This means small cores with independent instructions that allow maximum utilization and 

efficient processing of dynamic, non-uniform work. NVIDIA’s tool for dealing with sparsity is 

their CUDA Sparse Matrix library (cuSPARSE) provided in their Deep Learning software 

development kit. cuSPARSE provides GPU-accelerated basic linear algebra subroutines for 

sparse matrices. Comparing the two approaches, Cerebras’s method is certainly more integrated 

while NVIDA leaves the work on the software developer to utilize the cuSPARSE library. [6] 

Not surprisingly, traditional memory architectures are not optimized for deep learning. 

Neural networks use weights and activations. The weight is simply the importance given to a 

neuron, and activations are how the network segregates useful and useless information. [7] In the 

widely used von Neumann architecture, memory is kept separate from the core. This has allowed 

processor technology and memory technology to develop somewhat independently according to 

industry needs. However, it means that the bulk of memory is slow and has high access latency. 

The saving grace for these memories is caches. Traditional memories rely on caches to improve 

performance by exploiting temporal locality. The issue for deep learning is that the fundamental 

operation of matrix-vector multiply has low data reuse. This makes caches less effective and 

potentially even lengthens memory access times as we have to check each filter for data that is 

unlikely there. The work-around to this issue is to transform the matrix-vector multiplication into 

a matrix-matrix multiplication which has high data reuse and allow the program to take 

advantage of the caches. However, this method changes the training dynamics. Cerebras 

proposes that the better answer to this problem is to house the memory on the chip. WSE has 

memory uniformly distributed across the cores. Each core is only 10s of microns away from 

memory. This layout allows the matrix-vector multiply to run at full performance. 

 

Challenges of Wafer-Scale Technology 

 The idea of building large-scale chips has floated around the tech industry for a while. As 

with most technological ideas that stray from the norm, there are many difficulties, foreseen and 
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unforeseen, that may arise. Before delving into the story of Cerebras and the path they traversed 

to produces the world’s largest chip, it is important to remember that wafer-scale chips are not a 

novel idea, but one that has been attempted long before. Although the wafer-scale chip was never 

successful until Cerebras’s Wafer-Scale Engine, it would be productive to examine previous 

attempts and why they never made it to market. In 1980, Gene Amdahl, a big name in Silicon 

Valley at the time, started Trilogy Systems Corporation. At the time Trilogy was the most well-

funded startup company in the history of Silicon Valley having raised $230 million from 

investors. Trilogy’s goal was to produce cheaper and more powerful computers than IBM by 

building a wafer-scale chip that was two and a half inches on each side. This translates to about 

4,000 square millimeters which is not as ambitious as Cerebra’s 46,225 square millimeters, but 

still a lot bigger than the average chip at the time which was around 40 square millimeters. [8] 

Unfortunately, Trilogy’s attempt at the first wafer-scale chip was not successful. A series 

of unfortunate events befell the company. Amdahl was involved in a car accident, proceeded by 

a lawsuit regarding the accident. Trilogy’s president, Clifford Madden, died of a brain tumor. 

Trilogy’s semiconductor fabrication plant was damaged during construction by a winter storm. 

Beyond these misfortunes of life, the technologies that Trilogy was developing were riddled with 

flaws which I discuss later. From there, the company lost its momentum. In 1985, Amdahl 

decided to stop all Trilogy development and reinvest the remaining $70 million that investors 

had put into Trilogy. This gave Trilogy the unfortunate label of one of the largest financial 

failures in Silicon Valley before the dotcom bubble of 2001. The tech industry coined the term 

“crater” to describe companies that consumed large amounts of venture capital only to later 

implode, leaving nothing for its investors. [9] 

Fast forward four decades, and a new, well-funded startup has brought the idea of wafer-

scale chips back to life. Cerebras is a Los Altos, California based startup that has raised more 

than $200 million in funding from investors to pioneer the Wafer-Scale Engine (WSE) in their 

deep learning system, the Cerebras CS-1. Cerebras tackles a lot of the same problems that 

Trilogy faced. These problems included yield, chip packaging, and system cooling. Perhaps 

Cerebras even drew inspiration from Trilogy in their approaches to some of these challenges. 

Hopefully, they can learn from Trilogy’s shortcomings as well.  

The larger area means it is nearly impossible to yield a full wafer of cores with zero 

defects. To address this unavoidable problem, Trilogy created redundancy on their chips. If one 

component was improperly manufactured, which happens reliably often, it was simply switched 

out through on-chip wiring and replaced by a correctly functioning copy. They used “Triple 

Modular Redundancy”, meaning every logic gate was triplicated. Cerebras uses almost an 

identical approach. They included redundant cores fabric links on the chip to replace the 
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defective cores and reconnect the fabric to restore the logical 2D mesh. Trilogy, however, would 

later find that the redundancy schemes they used were not sufficient to produce reasonable 

manufacturing yields. Cerebras, perhaps having learned from Trilogy’s failure, was more 

thoughtful in designing their redundancy schemes and has not run into this problem. 

Another difficulty that arose for Cerebras was the issue of effective power delivery across 

the large chip. They found that if they delivered power from the edge of the chip, the resistance 

in the interconnects could be too much and cause all voltage to be lost before it reached the 

middle of the chip. To solve this issue, they had to deliver power into the chip from above. So 

they ended up with a power-delivery system that sits about the chip with a watercooled cold plate 

below. Trilogy did not have this issue, possibly because their chip was not as large as Cerebras’s. 

Although Trilogy’s chip used less power due to the efficiency of being a single chip, the 

dense packing made heat density a challenge. This required them to develop new cooling 

technologies such as sealed heat exchangers which use fluids to transfer heat. CS-1 uses up to 20 

kilowatts of power to operate. This number is much greater than the maximum power any other 

single chip. For example the Tesla V100 has a max power consumption of 300 watts. However, 

it is comparable to an AI cluster like DGX-1 which has a power consumption of 3200 watts of 

the DGX-1. The heat density on the Cerebras chip is too high for direct air cooling. So naturally, 

Cerebras would have to find a way to effectively cool its chip. The way Cerebras approaches 

cooling is by stacking the silicon chip on top of a watercooled cold plate. The water carries heat 

from the wafer through the cold plate. This way the plate can cool every section of the chip 

evenly. Cerberas calls this technique utilizing the “Z-dimension”. This large cooling system adds 

a lot of volume to the total CS-1 unit. The majority of the unit is taken up by the cooling 

mechanism. Trilogy had also decided to vertically stack computer chips. Their reasoning, 

however, was to allow for extremely dense packing of signal wiring. 

A new problem arises with this configuration. When the chip is active, the power-

delivery system, chip, and plate stacked on top of each other must warm up to the same 

temperature. However, as the three components warm, they expand at different rates. The power-

delivery system consists of copper which expands rapidly. The silicon of the chip expands 

minimally. The fiberglass of the plate expands at a more moderate rate. This would be an issue in 

even typically sized chips. The difference in expanded sizes can be enough to shear away their 

connection to a printed circuit board. In extreme cases it could produce enough stress to break 

the chip. In a wafer-scale chip, the issue is even more concerning. Even a small change in size 

translates to millimeters. Trilogy failed to account for this problem, and their chip interconnect 

technology had layers that often delaminated. There was no automated way for Trilogy to repair 

soldering errors. Although Cerebras was prepared to deal with this issue, the solution was not an 
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easy one to find. The only way to keep the power-delivery posts connected was to find a material 

that had the right intermediate coefficient of thermal expansion that would sit neatly between the 

coefficients of the silicon and fiberglass. The engineers at Cerebras was never able to find one so 

they had to invent one instead. This took them about a year and a half to do. 
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Analysis and Discussion 

 Cerebras has been quite a success so far. It received an abundance of media coverage 

when it came out of “stealth mode” in the summer of 2019, and was presented at Hot Chips, a 

conference on high-performance microprocessors, in August of 2019. The warm response was 

likely due to the tech industry’s desire for innovative ways to propel computers forward. There is 

a sort of lack in advancement that consumers are starting to notice now that Moore’s Law and 

Dennard Scaling has ended. Cerebras provides a new and exciting method of advancement. 

 Cerebras has already had a number of customers purchase the CS-1 which without doubt 

comes with a very high price tag; so high that they have not even publically disclosed it. Their 

most notable customer so far is the U.S. Department of Energy’s Argonne National Laboratory. 

In a November 2019 press release, the laboratory speaks very highly of the capabilities of 

Cerebras’s CS-1. They claim “the CS-1 delivers record-breaking performance and scale to AI 

compute, and its deployment across national laboratories enables the largest supercomputer sites 

in the world to achieve 100- to 1,000-fold improvement over existing AI accelerators.” The CS-1 

has not released any benchmark testing data so there is no evidence of its superior performance. 

Argonne has not only invested a lot of money into the CS-1, but also time. According to Rick 

Stevens, Argonne Associate Laboratory Director for Computing, Environment and Life 

Sciences, “We’ve partnered with Cerebras for more than two years and are extremely pleased to 

have brought the new AI system to Argonne.” The CS-1’s first application area is cancer drug 

response prediction. The Department of Energy is anticipating deploying the CS-1 at the 

Lawrence Livermore National Laboratory to “accelerate its AI initiatives and further enhance its 

simulation strengths with the machine learning capabilities of the CS-1.” [10] 

 This sign of interest from the government department and such reputable labs is a 

promising sign of that the CS-1 can deliver on its claims of superior performance. However, it is 

difficult to compare the actual performance of the chip because Cerebras has not released 

benchmark test results. They refuse to even publicly state the clock rate of the processor.  

 The building of the wafer-scale chip was certainly a feat of ingenuity. The company was 

able to address all these issues and come out on the other side with a beautiful and enormous 

chip. However, there are some concerns that Cerebras has yet to even acknowledge. With the 

grand ambition of squeezing all components of a machine learning accelerate, Cerebras opted to 

house all the memory on-chip. This makes memory accesses lightning fast, but severely restricts 

the amount of memory within CS-1. Cerebras advertises 18 gigabytes of on-chip memory and 

400,000 cores. Each core is directly connected to its own portion of memory. This means that the 

amount of memory per core would be: 
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18 GB

400,000 cores
=  0.000045 GB per core =  45 KB per core 

This is alarmingly small, and comparable to an average L1 cache. For example, Intel’s 

Skylake Processor holds a 64 Kilobyte L1 cache per core; including both data and instruction 

caches. [11] Upon hearing this comparison to the L1 cache of other processors, one might 

wonder if Cerebras could use the on-chip memory as a sort of cache and hook the chip up to a 

large external memory that would serve as the main memory. But, as mentioned previously, deep 

learning programs typically have a low data reuse rate. Reuse rate is what caches rely on and 

exploit. They bring frequently used data closer to the processor in order to decrease access 

latency times to those parts of the memory. To make matters worse, Cerebra engineers realize 

the only way to input memory through the chip is to have it enter from the edges. This makes 

connecting the CS-1 to an external memory even more unreasonable. 

 Given such a small memory size, this then becomes a matter of batch size. The batch size 

of a machine learning algorithm is a hyperparameter that defines the number of samples to work 

through before updating the internal model parameters. The size of the memory on the WSE 

restricts the batch size that can be used. There is extensive debate in the machine learning 

community on whether smaller or larger batch sizes produce better results. Stochastic gradient 

descent is an iterative method for optimizing an objective function with suitable smoothness 

properties. Small batch sizes limit parallelization of stochastic gradient descent in deep learning. 

Large batch sizes do not have this problem. However, a larger batch size increases computational 

cost and decreases performance. [12] Typically, engineers use a batch size of 64, 128, or 256. 

Whether this batch would fit into the 18 gigabytes of memory offered by CS-1 depends on the 

intrinsic size of the sample data. Thus, in this report, we will not reach a conclusion on whether 

the on-chip memory of WSE is sufficient, but simply remark on the restriction it places on batch 

size. 
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Summary and Learnings 

 

 For decades the goal of the computer architects was to continue miniaturizing 

technology. This was due to the benefits realized by Dennard’s scaling which meant smaller was 

better in every way. That is until engineers began to approach the physical limitations of how 

small a transistor could be. The approach with wafer-scale technology is to think bigger. The 

components of the chip stay small, but condensing them onto a large chip allows for higher 

density and better performance. 

 Overall, the process of researching and writing this report was very interesting. I learned 

a lot about very specific aspects of machine learning. I would like to spend more time learning 

about machine learning so that I can fully grasp some of the concepts required to fully 

understand the changes Cerebras is bringing to the field. I was able to get an understanding of 

things like sparsity and weights and activations. However, I wish I could have learned more 

about matrix-vector to matrix-matrix multiply mini batch. 

 A limitation, and mild annoyance, to my research process was the amount of information 

Cerebras has left undisclosed. Cerebras unveiled the CS-1 late last year so there is little data on 

how it performs in real situations. Andrew Feldman, chief executive of Cerebras Systems, insists 

that its focus is on real customer trials and reviews. Feldman has no interest in industry 

benchmarks such as MLPerf, the most widely cited measure of computer chip performance on 

AI. [13] Perhaps in the next year or so, the performance of Cerebras’s CS-1 system will speak 

for itself and the machine learning industry will know a lot more about weather this is a viable 

direction for machine learning chips. Until then, we are left with only the biased claims of 

superior performance made by Cerebras, and hope for a promising future for machine learning. 
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